
ISRAEL J O U R N A L  OF M A T H E M A T I C S  9 5  (1996) ,  253-280 

RATIONAL CENTRAL SIMPLE ALGEBRAS 

BY 

ZINOVY REICHSTEIN* 

Department o/ Mathematics, Oregon State University 

Corvallis, OR 97331, USA 

e-mail: zinovy@math.orst.edu 

AND 

NIKOLAUS VONESSEN** 

Department of Mathematics, University of Southern California 

Los Angeles, CA 90089-1113, USA 

e-mail: vonessen@math, usc. edu 

Dedicated to the memory of E. C. Posner 

ABSTRACT 

We introduce a notion of rationality (called toroidal or t-rationality) for 

central simple algebras which extends Demazure's characterization of ra- 

tional algebraic varieties via torus actions. We prove a structure theorem 

for t-rational central simple algebras and study the interplay among t- 

rationality, crossed products and rationality of the center in the setting 

of universal division algebras. 

* Par t ia l ly  s u p p o r t e d  by an  NSF pos tdoc to ra l  fellowship. 

** Par t i a l ly  s u p p o r t e d  by NSF gran t  DMS 9201465 and  by F A P E A L  (Alagoas,  
Brazil) .  

Received Apri l  7, 1994 

253 



254 z. REICHSTEIN AND N. VONESSEN Isr. J. Math. 

1. I n t r o d u c t i o n  

Throughout this paper k will be a fixed algebraically closed base field, all rings 

will be PI-algebras over k and all homomorphisms between them will be k-algebra 

homomorphisms. All central simple algebras will be finite-dimensional over their 

centers which, in turn, are always assumed to be finitely generated field extensions 

of k. We will usually denote central simple algebras by A, division algebras by D, 

and their centers by K. The universal division algebra of m generic n x n-matrices 

over k will be denoted by Dm,n and its center by Km,n. 
Recall that a field extension k C L is called ra t iona l  if L -- k ( x l , . . . , X d )  

for some algebraically independent elements x l , . . . ,  Xd. In this paper we extend 

this notion of rationality to finite-dimensional central simple algebras. We call 

it t o ro ida l  r a t iona l i t y  or t - r a t i ona l i t y  for short. A central simple algebra 

is defined to be t - r a t iona l  if it admits a faithful action of a torus of maximal 

possible dimension; see Section 5 for details. This definition was motivated by 

Demazure's characterization of rational algebraic varieties via torus actions [De, 

p. 521] and our own investigation of torus actions on non-commutative rings 

[RV1]. Demazure's result implies, in particular, that in the case of fields our 

definition of rationality coincides with the usual one. 

We are especially interested in the following question: which universal division 

algebras Dm,n are t-rational? (See Section 3 for background material on universal 

division algebras.) This question is related to two longstanding open problems: 

(a) Which universal division algebras Dm,n are crossed products? and (b) Which 

universal division algebras have rational centers (over k)? A connection between 

these two problems was suggested by le Bruyn [B]. We show, in particular, that 

if Dm,~ is t-rational then it is a crossed product and has a rational center. 

Our main result is the following classification of t-rational central simple 

algebras. Part (a) is proved in Section 6, and part (b) at the end of Section 

7. 

THEOREM 1.1: 

(a) A k-division algebra D with center K is t-rational i f  and only i f  D is 

isomorphic to a tensor product of  symbol algebras 

(al, a2, K, u.,1) | "'" (~K (a2r-1, a2~, K, Wr) 

where K = k ( a l , . . . , a a )  is a purely transcendental extension o f  k o f  
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transcendence degree d >_ 2r, wi E k is a primitive mi-th root of unity, 

and ~n~ I rn~_l 1"" I m l. 

(b) A central simple algebra A is t-rational if  and only if A ~- Mn(D) where 

D is a t-rational division algebra. 

The basic product of symbols in part (a) is isomorphic to the division algebra 

of fractions Q~ of the skew polynomial ring pal; see Lemma 2.3. In this sense 

Theorem 1.1 is a non-commutative analogue of [De, Cor. 2, p. 521]. 

We also note that Theorem 1.1(a) resembles Tignol's decomposition theorem 

[T, 1.10] (and its generalizations by Draxl [Dr] and by Tignol and Wadsworth 

[TW]). In fact, our proof uses arguments similar to those in [T]; for details see 

Remark 6.3. 

Applying Theorem 1.1 to universal division algebras we derive the following 

result which is proved in Section 8. Here we call an algebra D stably t-rational 

if it becomes t-rational after adjoining a finite number of central indeterminates. 

THEOREM 1.2: 

(a) I f  the universal division algebra D,,~,n is stably t-rational then n is square- 

free and char (k) ~ n. 

(b) Let n be a square-free integer. I f  the universal division algebra D,,~,p is 

stably t-rational for each prime divisor p of n, then Dm,,~ is stably t-rational. 

The rest of this paper is organized as follows. Section 2 contains definitions 

and notational conventions which are used in the sequel. A brief summary of the 

background material on universal division algebras is presented in Section 3. In 

Section 4 we prove a result about skew-symmetric bilinear forms on free abelian 

groups. In Section 5 we introduce the notion of t-rationality for central simple 

algebras. Theorem 1.1(a) is proved in Section 6. In Section 7 we study torus 

actions on central simple algebras and prove Theorem 1.1(b). In Section 8 we 

derive several corollaries of Theorem 1.1 and prove Theorem 1.2. Our proof of 

part (b) relies on the remarkable recent paper of Saltman [Sa]. In Section 9 we 

construct a finite field extension F of K2,,~ of degree ( n -  1)! such that D2,n | F is 

a t-rational division algebra. This construction implies, in particular, that Dm,,~ 

is t-unirational (i.e., is contained in a t-rational division algebra of degree n) for 

any m, n > 2 and that Din,2 is t-rational for every m > 2. 

We do not know whether or not the universal division algebra Dm,,~ is t- 

rational for square-free integers n _ 3. A positive answer to this question would, 
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in particular, imply that D,~,n is cyclic and has a rational center. 
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2. Prel iminaries  

We shall use the following notation. 

m , n  

k 
T = Td = ( k* )  d 

X.(T) 
03 

A 
D 
Z(R) 
(a,b,g,w) 
Pg 
Qd 

Tm,,(F) 
Cm,n(F) 
D,,~,n(F) 
Km,,,(F) 

integers > 2, 
algebraically closed base field, 
d-dimensional torus, 
the group of characters of T, 
usually denotes a root of unity in k, 
central simple algebra, usually with center K, 
division algebra, usually with center K, 
center of the ring R 
symbol algebra; See Definition 2.1(a), 
skew polynomial ring; see Definition 2.2, 
division algebra of fractions of p d, 
trace ring of m generic n x n-matrices over F, 
center of Tm,n(F), 
universal division algebra of m generic n • n-matrices, 
center of Dm,,~(F). 

We will usually write Gm,n for Gm,,~(k), Dm,,~ for Dm,,~(k), etc. 

Definition 2.1: (a) Let K be a field, let w E k be a primitive m-th root of unity 

and let a, b E K. The symbol algebra (a, b, K, w) is the K-algebra given by 

generators x and y and relations x m = a, ym = b and xy = wyx. 

(b) We shall call a division algebra D a basic p roduc t  of symbols if its center 

K = k(al , . . . ,  ad) is a purely transcendental extension of k of transcendence 
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degree d and 

(1) D ~- (al,a2, K, Wl) | "'" | (a2~-l,a2,-,K,w~) 

where 2r _< d, wi C k is a primitive mi-th root of unity and mr [ m~-i  [ --- [ ml .  

Definition 2.2: Let ~ = (wl . . . .  ,w~) be an r-tuple of roots of unity in k where 

wi is a primitive mi-th root of unity and mr I m~-i  [ ' "  [ ml.  Let d > 2r. 

We define pd to be the k-algebra given by generators z l , . . . ,  Zd and relations 

zjz~ = cjtztzj with c2i-1,2i = wi for i = 1 , . . . r  and cj~ = 1 for all other values of 

j < l. It is a skew polynomial ring. We denote the division algebra of fractions 

of Pg by Q~. 

LEMMA 2.3: The algebra pd is a PI-domain of degree n = rnlm2.. .m~..  

Its division algebra of fractions Qd is isomorphic to the basic product of 

symbols (1). 

Proof'. The first statement is proved in [R1, 3.3.6]. To prove the second assertion 

denote the generators of the i-th symbol algebra by x2i-1 and x2i. That  is, for 

i =  1, . . , r w e h a v e  m, m, . X 2 i _ l  -~ a 2 i _ l ~  x 2 i  : a 2 i  , and X 2 i _ l X 2  i : W i X 2 i X 2 i _ l .  Let 

r pd ~ D be the map given by r = xi for i = 1 , . . . , r  and r = aj 

for j = r + 1 . . . . .  d. By JR1, 3.3.6], r maps the center of pd isomorphically 

onto k[a l , . . . ,  ad]. Thus r is injective by [R1, 1.6.27] and extends to an injective 

homomorphism ~b: Q~ , D. The image of this homomorphism contains all x~ 

and all aj.  Thus r is an isomorphism. 1 

Note that Lemma 2.3 shows, in particular, that a basic product of symbols is 

indeed a division algebra. We note the following properties of the algebras Q~. 

THEOREM 2.4: Let D = Qd be as in Definition 2.2. Denote the center of  D by 

K,  and set n = ml  . . .m~. Then 

(a) I f  char(k) = p  > 0 t h e n p { n .  

(b) D is a crossed product for the group 7L/mxZ • . . .  • Z /mrZ .  

(c) I f  L is a subfield of D containing K then the Galois group of  L over K is 

abelian. 

(d) The exponent of  D is equal to ral. 

(e) I f  n is square-free then r = 1 and D is cyclic. 

Proos As seen above, n is the degree of D. (a) If char (k) = p > 0 then no mi is 

divisible by p. Thus n = m l . . . m ~  is not divisible by p. (b) and (e) follow from 
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[RI, 3.3.6 and 3.3.9]. (d) is a consequence of Lemma 2.3, and (e) follows from 

(b). | 

3. Un ive r sa l  d ivis ion a lgebras  

tn this section we briefly recall a number of definitions and results concerning 

universal division algebras which will be used in the sequel. 

Let F be a field and let -q) be mn 2 independent commuting variables; here x i j  
i , j  = 1 , . . . , n  and l = 1 , . . . , m .  The algebra of generic matrices Gm,n(F) is 

the F-subalgebra of the matrix algebra Mn(F[xI~)]) generated by the m generic 

matrices X1 = ( x ) ) , . . . , X m  = ( x i j ) .  This is a domain of PI-degree n. Its 

division algebra of fractions is called the un ive r sa l  d iv is ion  a l g e b r a  of m 

generic n • n-matrices. We shall denote this division algebra by Dm,n(F). Thc 

center of Dm,n(F) is called the field of rational matrix invariants. It is generated 

(as a field extension of F)  by the coefficients of the characteristic polynomials of 

the elements of G . . . .  We shall denote this field by Km,,~(F). For details of this 

construction see [C, Section 12.6] or [F3]. 

Throughout most of this paper we shall be interested in universal division 

algebras over F = k. In this case we will write Dm,n and Km,~ for Dm,n(k) 

and Km,n(k), respectively. It is easy to see that if F is an extension of k then 

D,~,,~(F) = D,~,,~ | F; see, e.g., the proof of [Sa, Lemma 12]. 

THEOREM 3.1 (Procesi): For every m > 2 the universal division algebra 

Dm+l,~ is isomorphic D,n,,~ extended by n 2 central indeterminates. Specitically, 

it" one embeds Dm,n in Dm+l,~ in the natural way, then Din+l ,  n -: Dm,n(Ci j  ) 

where i , j  = 0 , . . .  ,n  - 1, and the n 2 central elements c,j = t r (X~XiXm+l  ) are 

algebraically independent over K . . . .  

Proof." By [Pr, p. 255], the n 2 elements cij E Km+l,n are algebraically indepen- 

dent over Km,~ and Kin+x,, = Km,n(Cij); see also JR1, 3.3.31]. Thus the natural 

inclusion of D,~,~ into Dm+l,,~ extends to an isomorphism. II 

Note that we can also write Dm+l,n as Dm,n(dij) where the dij are elements 

of Km+l,,~ satisfying 

Xm+l  E i j : dij X 1X  2 . 
i , j=0  
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Recall that  division algebras D and E are s t a b l y  i s o m o r p h i c  if the division 

algebras D(xl . . . . .  xr) and E(yl , . . . ,y~)  are isomorphic for some central inde- 

terminates Xl, �9 �9 x~, Yl, �9 �9 �9 Ys. In particular, Theorem 3.1 implies that  Dml,n 

is stably isomorphic to D,,2,n for any ml ,  rn2 > 1. 

THEOREM 3.2 (Saltman): Let n = ab where a and b are relatively prime 

positive integers. Then the universal division algebra Din,, is stably isomor- 

phic to the algebra Dm,~ | Din,b, where F is the [ield compositum of Km,~ and 

Km,b over k. 

Proof: This is implicitly contained in the proof of [Sa, Theorem 13]. For 

completeness we supply a short explanation. Write 

(2) Dm,.  --- D(a) | D(b) 

where D(a) and D(b) are division algebras of degree a and b respectively. Let 

K be the field composi tum of K,~,, and F over k. Define L ,  to be the function 

field of the Brauer  Severi variety given by Dm,, | D(a) ~ over K; similarly 

for Lb. Let L'  be the field composi tum of L~ and Lb over K.  In particular, 

Dm,,,| L ~ = D(a)| L t and Dm,b| L' = D(b)| L ~. Combining 

this with (2) we obtain 

Dr,.,. @K..,. L' = (D.~,. |162 L') | (Dm,b | L ~) 

= (Dm,a | Din,b) | Z'. 

The proof of [Sa, Theorem 13] shows that  L t is rational over Km,,~ and stably 

isomorphic to F. | 

4. Skew-symmetr ic  forms 

It  is well-known that  a skew-symmetric bilinear form r on a d-dimensional real 

vector space can always be written in the form 

~b = g~ A g~ + - . .  + g2~-1 A g2~ 

for some basis {gl . . . . .  gd} and some r _< d/2; see, e.g., [St, 1.5.1]. Here 

{g~, . . . ,g~} is the dual basis of V*. A similar s ta tement  is true for skew- 

symmetric forms on finite abelian groups; see [dR, Sect. 19] and [W, Sect. 4]. In 

this section we prove the following variant of these results. 
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PROPOSITION 4.1: Let V be a free Z-module of rank d, let m be a positive 

integer and let r V x V ----, Z / m Z  be a skew-symmetric bilinear form. Then 

there exists a Z-module basis g l , . . - ,  ga of V such that  

r = csg  A g; + . . .  + ergL-x A 

Here 2r < d, cl . . . .  ,c~ E Z / m Z  and ord(c.) [ ord(c~_l) I " '"  [ ord(el).  

Proof." We begin with the following well-known lemma; see, e.g., [Lam, 1.5.5 and 

1.4.6]. For completeness we supply a short direct proof below. 

LEMMA 4.2: Suppose a l , . . . , a d  are integers and gcd(a l , . . . , ad )  = 1. Then 

there exists a d x d integral matr ix  M of determinant +1 whose tirst row is 

(a l , . .  . ,ad). 

Proof." We say that  the d-tuple of integers a = ( a l , . . . ,  ad) is completable if there 

exists a d • d integral matr ix  M of determinant +1 whose first row is ( a l , . . . ,  ad). 

Note that  for any integral matr ix  N of determinant +1, aN is completable if and 

only if a is. In particular, we can permute the ai -s, replace a2 by a2 + nal 

where n E Z, or multiply ai by - 1 .  If we obtain a completable d-tuple as a 

result of these operations then the original d-tuple was completable. Since the 

above-described operations allow us to perform the Euclidean algorithm, we can 

use them to construct the d-tuple (1, 0 , . . . ,  0). Since (1, 0 , . . . ,  0) is obviously 

completable, our original d-tuple must be completable as well. II 

LEMMA 4.3: Let r = m a x { o r d r  e , f  E V}. Then there is a basis 

{e l , . . . ,  ed} of  V such that r e2) is of order r. 

Proof'. Suppose ordr f )  = r for some e, f E V. We may assume e • n V  for 

any integer n > 2; otherwise replace e by e/n.  Then Lemma 4.2 says that  there 

is a basis { f l , . - . ,  fd} of V with f l  = e. Suppose 

f = a l f l  + ' ' ' + a d f d  

for some a l , . . . ,  ad E Z. For i = 2 , . . . ,  d let 

bi = aJgcd (a2 , . . . ,  ad). 

Since r  b2f2 + . . .  + bdfd) divides r  f )  in Z / m Z ,  its order must also be r. 

Hence, we may assume without loss of generality that  

f = b2h -1-"" -t- bdfd �9 
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By Lemma 4.2 there exists a basis {e2 , . . . , ea}  of Span(J2 , . . . ,  ]a) such that 

] = e2. Set el = ]1 = e. We have thus constructed a basis { e l , . . . , ed }  of V 

with the property that ~b(el, e2) has order r. | 

We can now finish the proof of Proposition 4.1 by induction on d. For d < 2 

the proposition is obvious. Suppose it holds for d - 2 .  Choose a basis { e l , . . . ,  ed} 

of V as in Lemma 4.3. Note that ~b(el, e2) is a generator of the subgroup r  V) 

of Z / m Z .  Indeed, this subgroup is cyclic, and the order of its generator cannot 

be strictly greater then the order of r  e2). Similarly r  e2) is a generator 

of ~P(e2, V). Therefore, for every i = 3 , . . . ,  d we can find al, bi E Z such that 

r  + aiel  + b~e2) = r  + b ib(e l , e2)  = 0 

and 

~(e2, e~ + aiei + bie2) = r ei) - a i r  e2) = O. 

Now let f l  = el, f2 = e2, and A = ei + aiel + ble2. Note that { f l , . . .  ]a} is a 

new Z-module basis for V. By our choice of ai and bi 

where 

~o = ~ ~b(f/, f j ) f :  A f ; .  
3<i(j 

Let gl = f l  and g2 = f2. Applying our induction assumption to r we can find 

a basis {g3, .- . ,  gd) of Span( f3 , . . . ,  fd) such that 

r = clg~ A g~ + . , .  + c,.g2,._ 1 A g~,., 

where 

and 

r = ord(cl) = max{ ord~p(e, ] ) :  e, f E V} 

ord(c~) I o rd ( c~_ l ) I . . .  I ord(c2). 

If r = 1, we are done. If r _> 2 it remains to show that ord(c2) I ord(cl). Note 

that r (Zgl + Zg3, g2 + g4) = Zcl + Zc2. By the maximality of ord(cl), this implies 

that ZCl + Zc2 = Zct. Consequently, ord(c2) I ord(Cl), as claimed. II 
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5. T o r u s  a c t i o n s  a n d  t - r a t i o n a l i t y  

By a torus of dimension (or rank) d we shall mean the algebraic group T = (k*)U. 

A torus action on a k-algebra R is a group homomorphism ~: T ~ Autk(R) 

where Autk(R) is the group of k-algebra automorphisms of R. The action is 

faithful if ~ is injective. If t E T and a E R then we shall write t(a) or ta for 

~(t)(a) when the reference to the action ~ is clear from the context. The set of 

invariant elements of R, i.e., elements a such that ta = a for every t E T, will be 

denoted by R T. 

A non-zero element a E R is called h o m o g e n e o u s  if there exists an algebraic 

character X: T ~ k* such that t(a) = x(t)a for every t E T. We say that X 

is the character associated to a. The T-action on R is called r a t i o n a l  if every 

element of R can be written as a sum of homogeneous elements. Note that a 

T-action on a commutative algebra R is rational if and only if the induced action 

of T on Spec(R) is given by a morphism of schemes T x Spec(R) ----* Spec(R). 

LEMMA 5.1: Given a rational torus action on a k-algebra R, 

(a) every a E R can be uniquely written as a sum of homogeneous elements 

with distinct associated characters; 

(b) the restricted action on the center Z (R)  of R is also rational. 

Proof." (a) Follows from linear independence of characters. 

(b) Write a central element a E Z(R)  as a sum al + " .  + ar where the elements 

a~ are homogeneous with distinct associated characters. It is enough to show 

that each a~ is central. In fact, we only need to check that a~ commutes with 

every homogeneous element h E R. This follows from part (a) applied to the 

element ah = ha E R. I 

There are no non-trivial rational torus actions on a division algebra; see, e.g., 

IV, appendix]. We shall be interested in torus actions satisfying the following 

weaker condition. 

Definition 5.2: Let A be a central simple algebra. A torus action on A is 

a lgebra ic  if every element of A can be written as bc -1 where b is a sum of 

homogeneous elements and c ~ 0 is a sum of central homogeneous elements. 

Algebraic actions are related to rational actions in the following simple way. 

LEMMA 5.3: Let A be a central simple algebra, and let T be a torus acting 

k-linearly on A. Then the action o f T  on A is algebraic i f  and only i rA  contains 
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a T-stable prime k-subalgebra R such that 

(a) T acts rationally on R, and 

(b) every element of  A is of the form bc -1 where b C R and 0 ~ c E Z(R) .  

Proof'. If  the act ion of T on A is algebraic, take R to be the subalgebra of A 

generated by the homogeneous elements. Then  T acts rat ionally on R and on 

the center Z(R);  see Lemma 5.1. Since A is a central localization of R, R is 

prime. This proves one direction. Conversely, suppose A contains a subalgebra 

R satisfying (a) and (b). Then T acts rat ionally on the center Z(R)  of R. By 

Posner 's  theorem*, A is a central localization of R. So every element of A is of 

the form a = be-l ,  where b and c are sums of homogeneous elements of R and 

Z(R) ,  respectively. | 

LEMMA 5.4: Suppose a torus T acts faithfully and algebraically on a division 

algebra D. Then every character o f T  occurs as an associated character for some 

homogeneous element of D. 

Proof'. Since D is a division algebra, tile characters associated to homogeneous 

elements of D form a subgroup V of the full character  group X . ( T ) .  Recall tha t  

X , ( T )  is a free abelian group of rank d = dim(T).  Thus V is a free abelian group 

of rank r < d. We want to prove V -- X . ( T ) .  

Let •1 , - . . ,  k~ be a ba~sis of V. Then  our action T - - *  A u t k D  factors through 

~: T , S --- (k*) r where r  = (x l ( t )  . . . .  ,~(~(t)). Since the T-act ion on D is 

faithful, r is injective. This implies d = r. Moreover, the factor group S / r  

is bo th  irreducible and 0-dimensional. Hence, S / r  = {1}, i.e., r is surjective. 

This proves that  r is an isoinorphism and thus X . ( T )  = 4)*(X.(S)) = V, a.s 

desired. | 

We now proceed to define the notion of t-rationality. Our s tar t ing point  is the 

following proposition; see [RV1, 1.3 and 3.6]. 

PROPOSITION 5.5: Let A be a central simple k-algebra of  transcendence degree 

d and matrix  size n. Assume that A admits a faithful algebraic action of  a 

torus T. Then 

* Posner's original theorem [Po] does not involve central localization. The stronger 
version we use here (which is also commonly referred to as Posner's theorem) was 
independently discovered by at least seven mathematicians; see [Rl, p. 53 and p. 
340] and [F3, p. 15]. 
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(a) d i m T < d + n - 1 .  

(b) I f  the action of T fixes the center of A pointwise, then dim T < n - 1. 

(c) I r A  = D is a division algebra with center K,  then d i m T  = t rdeg(K/KT) .  

Note that  Proposition 5.5 may be viewed as an affine non-commutative 

generalization of [De, Cor 1, p. 521]. 

Definition 5.6: Let A be a central simple algebra which is finite-dimensional over 

its center K.  Assume that  the matr ix  size of A is n, and that  K is an extension of 

k of transcendence degree d. Then A is called t o r o i d a l l y  r a t i o n a l  or t - r a t i o n a l  

(over k) if it admits a faithful algebraic action of a torus of dimension d + n - 1. 

Moreover, A is called s t a b l y  t - r a t i o n a l  if it becomes t-rational after adjoining 

a finite number of central indeterminates. 

Remark 5.7: Note that  our definition of t-rationality mimics the s tatement  of 

[De, Cor 2b, p. 521] in the non-commutative setting. In fact, [De, Cor 2, p. 

521] immediately implies that  a field is t-rational if and only if it is a purely 

transcendental extension of k. 

Example 5.8: Let pd  be the skew polynomial ring of Definition 2.2. Then the 

division algebra of fractions Q~ of pd  is t-rational. Indeed, the d-dimensional 

torus T = (k*) d acts faithfully and rationally on P~ by t(zl) = tizi for t = 

( t l , . . . ,  td) E T. Hence, Qd is t-rational by Lemma 5.3. 

In the next section we will prove that  every t-rational division algebra is, in 

fact, isomorphic to Q~ for some choice of ~ and d. 

LEMMA 5.9: I f  A is a t-rational central simple algebra then so is A(x)  for a 

central indeterminate x. 

Proof'. If A is t-rational via a faithful algebraic action of a torus T, extend the 

T-action on A to an algebraic T x k*-action on A(x)  in the obvious way. | 

PROPOSITION 5.10: 

(a) Let T be a torus acting algebraicaily on a central simple algebra A of 

degree n and let K be the center of A. Then the induced action o f T  on K 

is algebraic. 

(b) Assume additionally that A = D is a division algebra, and that the T-  

action on D is faithful Then the subgroup S o f T  which acts trivially on 

K is finite. 
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Proof'. (a) Let R be the k-subalgebra of A generated by all homogeneous elements 

and let Z be the center of R. Then T acts rationally on R and Z; see Lemma 5.1. 

By our assumption A is the total ring of fractions of R. By Posner's theorem, 

the center K of A is equal to the field of fractions of Z. Since T acts rationally 

on Z, it acts algebraically on K. 

(b) Suppose t E S. Let h be a non-zero homogeneous element of D with char- 

acter )~. Then det(h) is a homogeneous element of K.  (Note that  det commutes 

with every automorphism of D.) The associated character of this homogeneous 

element is )C where n is the degree of D. Consequently, )r = )c(t) n = 1. Since 

this is true for every character of T (see Lemma 5.4), we conclude that t '~ acts 

trivially on D, so that t '~ = 1. Hence, S is contained in the n-torsion subgroup 

of T, which is finite. | 

6. P r o o f  of  T h e o r e m  1.1(a)  

In this section we prove Theorem 1.1(a). In view of Lemma 2.3 and Example 

5.8, we can restate it as follows. 

THEOREM 6.1: Every t-rational division algebra D is isomorphic to the division 

algebra of fractions Q~ of P~ for some choice off~ = (w l , . . . ,  w~) and some integer 

d>_2r. 

It is worth noting that as a consequence of this result, Theorem 2.4 applies to 

every t-rational division algebra. 

Proo~ We begin with the following lemma. 

LEMMA 6.2: Let D be a t-rational division algebra of degree n, and let T be a 

torus of dimension d = trdegkD acting faithfully and algebraically on D. Then 

(a) D T = k. 

(b) Every homogeneous component of D has dimension 1 over k. 

(c) Any  two homogeneous elements x and y o l D  commute up to an n-th root 

of unity. That is, xyx-Xy  -1 is an n-th root of unity in k. 

(d) The n-th power of every homogeneous element is central in D. 

Proof" (a) Denote the center of D by K. By Proposition 5.5(c), t rd eg (K /K  T) = 

d, i.e., K T is an algebraic extension of k. Since k is algebraically closed, this 

means K T = k. Assume x C D T. Then the coefficients of the characteristic 



266 Z. REICHSTEIN AND N. VONESSEN Isr. J. Math. 

polynomial of x are also fixed by T, i.e. they lie in K T : k .  Hence, x satisfies a 

polynomial over k. Since k is algebraically closed, this implies x E k. 

(b) If x and y are homogeneous elements with the same associated character, 

then y x  - 1  E D T = k ,  that  is, y E k x .  

(c) We have x y x - l y  -1  E D T = k.  Since this element has determinant 1, it 

has to be an n-th root of unity. 

(d) follows easily from (c). I 

We are now ready to finish the proof of Theorem 6.1. Let T be a torus of 

dimension d acting faithfully and algebraically on D. We define a skew-symmetric 

bilinear form r on the free abelian group V = X .  (T) as follows. Recall that  for 

every character X E V there exists a non-zero homogeneous element x x E D with 

associated character X; see Lemma 5.4. Let 

= 

By Lemma 6.2(b), r depends only on X and ~ and not on the particular 

choice of x x and x v. By Lemma 6.2(c) this form takes values in the (cyclic) 

group of the n-th roots of unity in k. Note that  we are writing this group 

multiplicatively. By Proposition 4.1 we can choose a basis X1, . . - ,  Xd of V such 

that  r X21) = wi  is an n-th root of unity for i = 1 . . . . .  r < d / 2  and 

r Xf) = 1 for all other j <_ l. Moreover, we may assume o r d ( ~ + l )  I ord(w~) 

for i = 1 , . . . , r -  1. 

Now let xi = x• E D be a homogeneous element with associated character Xi 

for i = 1 . . . . .  d and let R be the k-subalgebra of D generated by these elements. 

Note that  x j x l  = r  X l ) x ~ x j .  

We claim that  D is the division algebra of fractions Q(R) of R. I t  suffices 

to prove that  every homogeneous element y of D belongs to Q(R). Let X 

be the associated character of y. Then X = X~ 1 ""X~ r for some integers ai. 

Consequently, y and x~ 1 . . .  x~ ~ belong to the same homogeneous component. By 

Lemma 6.2(b), the homogeneous components are one-dimensional over k. Thus 

y e Q(R), proving Q(R) = D. 

We will now prove that  R is isomorphic to Pg. Indeed, let r be the k-algebra 

homomorphism pd ____, R which sends zi to xi for i = 1 , . . . ,  d. By our choice 

of xi, r is well-defined and surjective. It  is injective by linear independence of 

characters. This proves that  R is isomorphic to Pg. Consequently, D = Q(R) is 

isomorphic to Qd. I 
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Remark 6.3: If H is the group of homogeneous elements of D then H / H  n K is 

an armature  (i.e., a finite abelian subgroup of D*/K*)  of order n2; see IT, 1.5]. 

Applying the results of [T] to this armature,  one obtains a decomposition of D 

as a product of symbol algebras. However, the product in IT, 1.10] may not be 

basic. In order to write D as a basic product of symbols, we worked with the free 

abelian group V = X , ( T )  instead of the finite group H / H  A K and appealed to 

Proposition 4.1 instead of IT, 1.8]. 

7. T o r u s  a c t i o n s  on  c e n t r a l  s i m p l e  a l g e b r a s  

In this section we study algebraic torus actions on central simple algebras. Our 

main result is Theorem 7.5. At the end of this section we prove Theorem 1.1(b). 

We begin with the following lemma. 

LEMMA 7.1: Consider a t-rational action of a torus T on a k-algebra R. Sup- 

pose R contains a non-zero nilpotent element. Then R contains a non-zero 

homogeneous nilpotent element. 

Prool~ Recall that  the characters of T form a free Z-module of rank d = dim(T),  

denoted by X, (T) .  We can identify X , ( T )  with Z d by identifying the character 

X with the tuple ( m l , . . . ,  md) if 

X ( S l , - - . , S d )  ---- S r ~ l .  . . S r ~  d .  

The usual Euclidean norm on Z d C R d induces thus a norm N: X , ( T )  ---~ R on 

the set of characters. In concrete terms, for X as above, 

N(X) = ~/m 2 + ' "  + reed �9 

To simplify the use of the norm N, we will write the group X , ( T )  additively 

throughout this proof. 

Suppose x E R is nilpotent. Write x as a sum of homogeneous elements: 

X ~ X l - ~ . . . ~ - X r  . 

Let Xi: T ~ k* be the character of T associated to the homogeneous element 

xi. We may assume that  the characters X~ are distinct, and that  N(X1) _> N(Xi) 

for all i. We claim that  xl  is nilpotent. Indeed, we know that  

(Xl + ' " + x ~ )  w = x ~ = 0 
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for some positive integer w. Expanding this expression and collecting the terms 

with the same associated character, we conclude that  

(3) ~ x i , " . x , ,~  = 0  

Xq + '"+Xiw --~ 

for every character #: T - -~  k*. If we now set ~t = wxl then the above sum will 

only contain one term, namely x T. Indeed, Xq + "'" + X~. =/~  implies 

w N ( x l )  = N(# )  = N(Xq  + " "  + Xl,,) <- N ( X q )  + " "  + N(Xi~)  <_ wN(x1 ) .  

Since we are assuming that N(:~l) _> N(xi~), this implies N(X~,) = N(X~) for 

all j .  Hence, the equality Xq +" "" + )~i~ = WXl implies Xq . . . . .  Xi~ = X1. In 

other words, when g = wx1, equality (3) becomes x~ = 0. Thus xl is a non-zero 

homogeneous nilpotent element of R. | 

LEMMA 7.2: Let T be a torus acting algebraically on a central simple algebra 

A. Then the nilradical N of  A T is nilpotent, and A T / N  is semisimple Artinian. 

We will later show that in fact N = 0, so that A T is itself semisimple Artinian; 

see Corollary 8.6. 

Proof." Denote by R the subalgebra of A generated by the homogeneous elements. 

Then R T = A T, and R is prime. By [LVV, II.3.4.2], R is an Azumaya algebra 

and thus finite over its center. By [V, 2.5], R T contains a set S of elements which 

are central (and thus regular) in R such that the localization R T s  -1 is Artinian 

modulo its nilradical N, which is nilpotent. But all elements of R T which are 

central in R (and thus A) are invertible in R T. Thus A T = R T = R T s  -1. | 

PROPOSITION 7.3: Suppose a torus T acts algebraically on a central simple 

algebra A. Assume that A is not a division algebra. Then the fixed algebra A T 

contains a non-trivial idempotent. 

Proof: Assume the contrary: A T has no non-trivial idempotents. 

We first show that under these assumptions every element of A T which is not 

nilpotent is invertible. By Lemma 7.2, the nilradical of A T is nilpotent, and 

A T / N  is semisimple Artinian. Since idempotents can be lifted modulo nilpotent 

ideals, and since A T has no non-trivial idempotents, the semisimple Artinian 

algebra A T / N  is a division algebra. Now let x be a non-nilpotent element of 

A T. Then x is invertible modulo N, i.e., for some y E A T, xy  = 1 + n with n 
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nilpotent. But elements of the form 1 + n are invertible. Thus x is invertible, as 

claimed. 

Denote the center of A by K. Let I be the K-vector  space spanned by the 

homogeneous zero-divisors in A. Since I is closed under multiplication by homo- 

geneous elements, it is an ideal of A. Since we are assuming that  A is simple, 

this implies that  either I = 0 or I = A. We will show that  neither can happen. 

This will contradict the assumption that  A T has no non-trivial idempotents. 

First we rule out the case I = 0. Let R be the k-subalgebra of A generated 

by the homogeneous elements. Since A is not a division algebra, it contains a 

non-zero nilpotent element. After multiplying this element by a scalar, we may 

assume that  it lies in R. Since T acts rationally on R, Lemma 7.1 says that  R 

contains a non-zero homogeneous nilpotent element. Hence, I r 0. 

It  remains to rule out the case I = A. We shall do this by showing that  I 

is nilpotent. First note that  a homogeneous zero divisor x E A is necessarily 

nilpotent. Indeed, assume the contrary. Then by the Caylcy--Hamilton Theorem 

ci(x) r 0 for some coefficient ci(x) of the characteristic polynomial of x. The 

element x i / c i ( x )  of A T is not nilpotent, so it is invertible. This implies that  x 

is invertible in A, contradicting the assumption that  x is a zero divisor. Conse- 

quently, x is nilpotent. Thus the finite-dimensional K-algebra I is generated by 

a multiplicatively closed set of nilpotent elements and is hence nilpotent, see [R1, 

1.3.31] or [A, Corollary 1]. | 

PROPOSITION 7.4: Suppose a torus T acts algebraically on a central simple 

algebra A = M,~( D). Then  the fixed algebra A "r contains a compIete collection o f  

pairwise orthogonal primit ive idempotents  o f  A. That  is, there exist primit ive  (in 

A) idempotcnts  e l , . . . , e , ,  C A T such that eiej = 5ijei and el + e2 + . . . + e~ = 1. 

Proof." We proceed by induction on the matrix size n of A. The assertion is triv- 

ially true if n = 1. If n _7 2, Proposition 7.3 implies that  A T contains a nontrivial 

idempotent e. Set f = 1 - e. Then e and f are orthogonal idempotents. By [R2, 

1.1.12], the algebra eAe  is simple. Note that  its matr ix  size is strictly smaller 

than n. Since the action of T fixes e, T acts algebraically on eAe.  By induction, 

(eAe)  T contains a complete set of r pairwise orthogonal primitive idempotents 

e l , . . . ,  er, where r is the Goldie rank of eAe. Similarly, ( f A r )  T contains a com- 

plete set of s pairwise orthogonal primitive idempotents f x , . . . ,  fs, where s is 

the Goldie rank of f A r .  Thus the ei and f j  form a set of pairwise orthogonal 
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primitive idempotents of A = Mn(D)  such that  their sum is 1. Consequently, 

n --- r + s (see [J, Chapter  III ,  w Theorem 2, p.59]). II 

Next we prove the main theorem of this section. 

THEOREM 7.5: Suppose a torus T acts algebraically on a central simple algebra 

A. Then one can write A in the form A = M,~(D) where 

(a) the standard matrix units are homogeneous for the T-action, and 

(b) D .  I,~ is a division algebra which is stable under the action of  T, and T 

acts algebraically on D. 

Here In is the n x n-identity matrix. 

Proo~ By Proposition 7.4, A contains a complete collection of pairwise orthogo- 

nal idempotents e11, . . . ,  e~n which are fixed by T. We will first enlarge this set 

to a set of n 2 homogeneous matrix units eij.  

Since A is simple, all eiiAejj  are non-zero. Also, E = enAe11 is a division 

algebra, and the e j jAe l l  (respectively, the e11Aejj) are one-dimensional right 

(respectively, left) modules over E (see, e.g., [R2, 2.1.21]). For j = 2 , . . . , n ,  

choose a non-zero homogeneous element eli in e11Aejj. Since e j jAe l l  is one- 

dimensional over E,  it contains a unique element ejl  such that  e l je j l  = e11. The 

uniqueness of ejl  implies that  ejl is homogeneous. Note that  e j le l l  -- ej l ,  and 

e l le l j  -- eli.  Since ej le  U is a non-zero idempotent in e j jAe j j ,  we have ej le  U = 

e j j .  We can thus consistently define eij  = e{le~j for all i, j -- 1 , . . . ,  n. Note that  

t h e  eij are homogeneous, and that  they are matrix units: e l j e k l  = 6 jke l l  implies 

that  eijekt = ~jkeil. 

Define a linear map p: A --+ A by p(a) = ~,~ e,,laex,,. One checks easily that  

the restriction of p to E respects multiplication. Thus D = p(E) = p(A) is a 

division algebra isomorphic to E. Using the matrix units eij, one defines a k- 

algebra isomorphism ~: A ~ Mn(D)  by sending a E A to the matr ix  (aij), where 

aij = ~ ,  e,,iaej,, (see [R2, 1.1.3]). Note that  q0(eij) is the standard matrix unit 

with a 1 in the ( i , j )-posit ion and zeroes elsewhere. For d E D, qo(d) = d.  ln. 

We now define the action of T on Mn(D)  by making qo equivariant. Then T 

acts algebraically on M,~(D), and the standard matr ix  units are homogeneous 

(since they are the images of the eij). Since eulel~ = e11, and since ell  is fixed 

under the action of T, the characters of the homogeneous elements e,~l and el,~ 

are inverse to each other. This implies that  p isequivariant.  Thus D is T-stable, 

and so is D .  I ,  = qo(D). 
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In order to show that T acts algebraically on D �9 In, it suffices to prove that 

it acts algebraically on D = p(E). Since p is equivariant, we only need to 

check that the action of T on E is algebraic. For simplicity, write e = ell and 

thus E = eAe. Let a �9 E. Then a = (7~a~) / (~bj ) ,  where the ai and bj are 

homogeneous elements of A and the bj are central in A. Multiplying the equation 

a(}-~bj) = ~ a i  by e on both sides, and using the fact that a = eae, we obtain 

a = (~-~ e a i e ) / ( ~  ebje). Note that the eaie and ebje are homogeneous elements 

contained in E = eAe and the ebje are central in E. Moreover, ~ ebje = e ~ bj 

is non-zero since ~ bj is a non-zero central element. Hence, T acts algebraically 

on E (see Definition 5.2), completing the proof of the theorem. | 

We now derive Theorem 1.1(b) from Theorem 7.5. 

Proof of Theorem 1.1(b): A matrix algebra over a t-rational division algebra 

is clearly rational. Assume now that A is a t-rational central simple algebra. 

That is, there is a faithful algebraic action of a torus T of dimension d + n - 1 

on A, where d is the transcendence degree of A over k and n is the matrix size 

of A. Write A = Mn(D) as in Theorem 7.5. Denote by S the subgroup of T 

acting trivially on D. The connected component S ~ of S is again a torus, and 

dim T = dim S ~ + dim T/S .  By Proposition 5.5, dim S ~ <: n -  1 and dim T / S  <_ d. 

Consequently, d i m T / S  = d, and D is t-rational. | 

8. Further properties of  t-rational algebras 

In this section we explore the consequences of Theorem 1.1. In particular, wc 

prove Theorem 1.2. Recall that Theorem 2.4 applies to all t-rational division 

algebras. 

COROLLARY 8-1: Let D1 and D2 be division algebras with centers K1 and K2, 

respectively. Let D -= (D] @gl K) @g (D2 @K: K), where K denotes the tield 

compositum of K1 and K2. 

(a) I f  D1 and D2 are t-rational division algebras then so is D. 

(b) I f  D1 and D2 are stably t-rational then so is D. 

Proof" (a) Write D1 and D2 as basic products of symbols as in Definition 2.1(b) 

and combine the two decompositions. (b) Adjoin central indeterminates to D1 

and D2 until they become t-rational; then apply part (a). | 
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COROLLARY 8.2: Let n be a square-free integer. 

(a) A division algebra D of  degree n is cyclic i f  and only i f  it contains a t- 

rational division subalgebra E of degree n. 

(b) The universal division algebra Dm,~ is a crossed product i f  and only i f  it 

contains a t-rational division subalgebra of  degree n. 

Proof: (a) Assume that E C D is t-rational. Then E is cyclic by Theorems 1.1 

and 2.4(e). Hence so is D. 

Conversely, suppose D is cyclic with center K. Then we can find non-zero 

elements xl  and x2 E D such that al = x~ E K, a2 = x~ E K,  and XlX2 = ~x2x l  

where w is a primitive n-th root of unity. Tsen's theorem implies that al and a2 

are algebraically independent; see [Pi, 19.4]. It is easy to see that the division 

subalgebra E of D generated by Xl and x2 (over k) is t-rational. 

(b) Assume n is square-free. By a theorem of Amitsur the universal division 

algebra Dm,n is a crossed product if and only if it is cyclic; see JR1, 3.3.12]. Thus 

(b) follows from (a). | 

Proof  of  Theorem 1.2(a): Assume that Dm,n is a stably t-rational division al- 

gebra. Combining Theorems 1.1(a) and 2.4(a), we see that char(k) ~ n. By 

Theorem 3.1, Dm+l,n is obtained from Dm,, by adjoining n 2 central indeter- 

minates. Thus Dm,,~ is t-rational for a sufficiently large integer m r. We may 

therefore assume without loss of generality that Dm,~ is t-rational. By Theo- 

rem 2.4(d), the exponent of Dm,,~ equals ml.  Since the exponent of Dm,n is 

known to be n ([R1, 3.2.8]) and n = m l . .  "mr, we conclude that r = 1. Hence, 

by Theorem 2.4(b), Dm,n is cyclic. By a theorem of Amitsur, this is impossible 

unless n is a product of distinct primes; see JR1, 3.3.12]. | 

Remark  8.3: A similar argument proves the following stronger assertion: If the 

universal division algebra Dm,n contains a stably t-rational division subalgebra 

of degree n then n is a product of distinct primes. 

Proof  of  Theorem 1.2(I)): We use induction on the number r of primes dividing 

n. If r = 1, there is nothing to prove. Otherwise write n = pa where p is a 

prime and a is a product of r - 1 distinct primes. Theorem 3.2 says that  Dm,n 

is stably isomorphic to D,~,~ | Dm,p where K is the compositum of Km,a and 

Km,p over k. We are assumingthat  Dm,p is stably t-rational; by the induction 
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assumption Din,= is stably t-rational as well. The conclusion of the theorem now 

follows from Corollary 8.1(b). | 

While on the subject of primary components, we note the following corollary 

of Theorem 7.5. 

COROLLARY 8.4: The primary components of a t-rational division algebra are 

again t-rational. 

Proof." Let D be a t-rational division algebra via the faithful algebraic action of 

a torus T. Denote the center of D by K,  and let E be a primary component 

of D. Then up to K-isomorphism, E is the underlying division algebra of some 

tensor power of D over K. That  is, D | = M~(E) for some positive integers 

m and n; see JR1, 3.1.40]. The algebraic action of T on D extends diagonally to 

an algebraic action on D ~m. Thus Theorem 7.5 allows us to assume that  E is 

T-stable, and that  T acts algebraically on E. Moreover, the action of T on the 

center K of E agrees with the original action of T on K.  So by Lemma 5.10(b), 

the subgroup S of T acting trivially on E is finite. Thus T / S  is a torus of the 

same dimension as T. Since E and D have the same transcendence degree over 

k, the action of T / S  makes E into a t-rational division algebra. | 

Remark 8.5: Our argument also proves the following. Let D1 and D2 be finite- 

dimensional division algebras with a common center K and let 

A = D1 | D2 = M~(E),  

where E is a division algebra. Assume that  DI and D2 are t-rational via faithful 

algebraic torus actions of the same torus T. If these actions agree on K,  then 

both A and E are t-rational. 

We conclude this section with another corollary of Theorem 7.5 which resembles 

a theorem of Bergman and Isaacs [BI] for actions of finite groups. 

COROLLARY 8.6: Let T be a torus acting algebraically on a central simple 

algebra A. Then A T is semisimple Artinian. 

Proof By Lemma 7.2, the nilradical N of A T is nilpotent, and AT/N  is semi- 

simple Artinian. It  only remains to show that  N = 0. Assume N contains a 

non-zero element x. Write A = M,,(D) with homogeneous standard matr ix  units 

eij as in Theorem 7.5. Then for some integers i and j ,  eiixejj is non-zero and 
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belongs to N. Write eiixejj = deij for some unique 0 r d �9 D. Denote by X 

the character of eij. Since deij and ejj = ejieij belong to A T, both d and ejl 

are homogeneous with character X -1. Thus d- le j i  is fixed, i.e., belongs to A T. 

Hence the non-zero idempotent eii = (deij) (d-  1 eji) belongs to the nilpotent ideal 

N, a contradiction. | 

9. Unirationality 

Recall that  throughout this paper Dm,n denotes the universal division algebra 

of m-tuples of n x n-matrices over k and Km,,~ denotes the center of D . . . .  In 

this section we construct a finite field extension F of K2,n of degree (n - 1)! such 

that  D2,n | F is a t-rational division algebra. We use this construction to prove 

that  Dm.n is t-unirational for any m, n > 2 (see Definition 9.3 and Corollary 9.5) 

and that  Din,2 is t-rational for any m >_ 2. We also give an explicit description 

of Din,2 as the division algebra of fractions of a skew polynomial ring P~; see 

Corollary 9.6. 

Construction o fF:  Let p(t) be the characteristic polynomial of the first generic 

matrix X1 in D2,n. Let a l , .  �9 an be the roots of this polynomial in the algebraic 

closure of K = K2,n and let L = K ( a l , . . . ,  an)  be the splitting field. Then the 

Galois group of L over K is Sn. Let G be the cyclic subgroup of Sn generated 

by the n-cycle (1 2 . . .  n), and let F = L c .  Note that  L is a cyclic extension of 

F of degree n. 

THEOREM 9.1: Assume char (k) { n. Then E = D2,n | F is a t-rational 

division algebra. 

Proof'. Since no non-trivial element of G = <(1 2 . .-  n )>  fixes a l ,  it follows 

that  Gal(L/F(ax))  = {1}. Hence F ( a l )  = L. Let h: K(X1)  , L be the 

K-algebra homomorphism which sends X1 to a l .  Counting dimensions, we see 

that  h | id: K(X1)  | F , L is an isomorphism. In other words, F(X1) is 

isomorphic to L. In particular, F(X1) is a field. 

Let 31 = X1,/~2, . . . ,  3,, be the elements of F(X1) corresponding to a l , . . . ,  a,~ 

�9 L. Let a �9 Gal(F(X1)/F)  be given by a(/31) = 3i+1 (mod n). Note that  the 

group Gal(F(X1)/F)  = <  a > is cyclic of order n. For any x �9 F(X1) we have 

(4) tr(x) = x + a(x) + . . .  + an- l (x )  �9 F. 
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Note tha t  the trace in E coincides with the trace in its maximal  Galois subfield 

F ( X l ) .  

Recall tha t  an element r of a ring R if called n - c e n t r a l  if r n lies in the center 

of R but  r i does not for any i = 1 . . . . .  n - 1. 

LEMMA 9.2: Let  co be a pr imi t i ve  n - th  root o f  un i t y  and let  

z = fl~ + w~2 + . . .  + J ' -~f l ,~  �9 F(X1) .  

Then  

(a) t r (z  ~) = 0 for i 7~ 0 mod n, 

(b) z is n-central  in E ,  

(c) F ( X 1 )  = g ( z ) ,  and 

(d) t r (X l  z - l )  = 1. 

Proof'. (a) Note tha t  a( z )  = w - l z .  Thus tr(z i) = t r (a(z i ) )  = al-itr(z~), implying 

tha t  t r(z i) = 0 i fw  ~ r 1. 

(b) Since a ( z  ~) = z ~, z"  E F.  Smaller powers of z cannot  belong to F since 

their traces are zero by (a). 

(c) Recall tha t  F ( X 1 )  = K ( ~ I  . . . . .  ~n),  tha t  the group S,~ = G a I ( F ( X ~ ) / K )  

acts on F ( X I )  by permut ing  ~31 . . . .  , 3 , ,  and tha t  K is the fixed field for tha t  

action. Thus we only need to show that  [K(z)  : K] = n!, i.e., tha t  z has 

n! distinct conjugates under the action of the symmetr ic  group. This follows 

from the definition of z, since 1, w , . . . ,  ~z " -1  are distinct, and since the ~qi, being 

eigenvalues of the generic matr ix  X1, are algebraically independent  over k. 

(d) Before we proceed with the proof, we remark tha t  z is invertible, since it is 

a non-zero element of the field F(XI). Now apply formula (4) with x = X t z  - I  = 

/31z -1. Since or(z) = ~o-lz, we have o'(z -1)  = wz -1 and thus 

t r ( X l z  -1)  = fllZ -1 + w~2 z - I  + ' "  + w'~-ll3nz -1 = zz  -1 = 1. | 

Now let z be as in Lemma 9.2. Par t  (c) implies, in particular,  tha t  F ( z )  = 

F ( X 1 ) .  In  other  words, 1, z . . . . .  z n-1 generate F(X1)  as an F-vec tor  space, and 

thus we can write 

(5) X1 = a0 + a l z  + . . . +  a , _ l Z  n-1 

where a o , . . . , a n - 1  E F.  Since t r (z  i) = 0 for i ~ 0 m o d n ,  we conclude tha t  

al  = ~ t r ( X , z  - l )  = ~ by Lemma 9.2(d). 
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By Lemma 9.2(b), z is n-central. Thus we can find an n-central invertible 

element ~ E E such that  z~ = w&z for some primitive n- th  root of unity w; see 

[Pi, 15.1a]. Moreover, we can write the second generic matrix X2 as 

(6) X2 = Yo + yl + " "  4- yn-1 

where yj E (vJK(z). Write Yl as 5 r  where r is an element of F(z).  If Yl r 0 

then r r 0 and, hence r and Yl are invertible. 

Now let w = Yl if Yl r 0 and w = ~ otherwise. Then zw = ~zwz. Hence, w is 

non-singular and n-central. Since zyj = J y j z ,  we can write 

n--1 

(7) = b jz wJ 
i=0 

for some bij E F. Here j -- 0, 2, 3 , . . . ,  n - 1. 

To summarize, we have chosen non-singular n-central elements z, w E E such 

that  zw = wwz and equations (5) - -  (7) hold with al  = 1/n and yl = 0 or w. 

Now let P = P~ = P~ 2+1 be as in Definition 2.2 with gt = (w) (here r = 1). 

We will now show that  E is isomorphic to the division algebra of fractions Q n~+l 

of P and therefore is t-rational; see Example 5.8. Indeed, we can write 

pd = k[Al, B,j]{ Z, W } / ( Z W  = w W  Z), 

where i = 0 , . . . , n - 1  and l , j  = 0 , 2 , 3 , . . . , n - 1 .  Let ~: Pg ----* E be the 

k-algebra homomorphism given by At ) at, B~j ~ b~j, Z ~ z and W 

w. Denote the image of this homomorphism by R. Let Q(R) be the central 

simple subalgebra of E which is obtained from R by inverting all non-zero central 

elements. In order to finish the proof of the theorem it is sufficient to show that:  

(i) Q(R) = E and (ii) ~ is an isomorphism between P and R. 

To prove (i) note that  Q(R) contains the generic matrices X1 and X2; see 

equations (5) - (7). Hence, D2.,, C Q(R). Moreover, since z E R, we also 

have g ( z )  C Q(R). Recall that  g ( z )  = F(X1);  see Lemma 9.2(c). Since Q(R) 

contains both  D2,n and F,  it has to be equal to all of E. 

To prove (ii), denote the centers of P and R by Z(P)  and Z(R)  respectively. 

Since R and E have the same PI-degree, we have r C Z(R) .  Since P is a 

finite Z(P)-module ,  R is a finite ~(Z(P)) -module .  Hence, by part  (i) 

t rdegk~(Z(P) )  = t rdegkZ(R) = t rdegkF = n 2 4- 1 = t rdegkZ(P  ). 
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This shows that  Ker(~) N Z(P)  = (0). Hence, ~ is injective; see [R1, 1.6.27]. 

Since ~o(P) = R, this completes the proof of (ii). | 

Definition 9.3: A division algebra D of degree n is called t - u n i r a t i o n a l  if it is 

contained in a t-rational division algebra of degree n. 

One could also define a notion of t-unirationality by requiring D to be con- 

tained in a t-rational central simple algebra of the same degree. We chose the 

stronger condition 9.3 because it is more interesting in the case of universal di- 

vision algebras. However, before we proceed, we remark that  the two definitions 

are, in fact, distinct. 

Example 9.4: A division subalgebra of a t-rational central simple algebra need 

not be t-unirational in the sense of Definition 9.3. 

Let V be a d-dimensional vector space over k. Consider a faithful action of 

a finite non-abel|an group G on V. Denote the field of rational functions of 

V by L = k(V) and the field of invariants by K = L c.  By [FSS, 5.5], we 

may assume, after adding some indeterminates to L and K,  that  there exists a 

division algebra D with center K which contains L as a maximal  subfield. Set 

A = D | L ~ M,~(L). Then A is t-rational, being matrices over a rational 

field. But the subalgebra D is not t-rational, since it is a crossed product for G 

and G is non-abel|an; see Theorem 2.4(c). Moreover, if E is any division algebra 

containing D and of the same degree, then E is also a crossed product for G. 

Consequently, E cannot be t-rational either. | 

COROLLARY 9.5: Suppose that char k ~ n. Then the universal division algebra 

Dm,~ is t-unirational for every n, m _> 2. 

Proof'. By Theorem 3.1 and Lemma 5.9, it is enough to show that  D2,,, is t- 

unirational. This is immediate from Theorem 9.1. | 

We note that  one can obtain a direct proof of Corollary 9.5 (i.e., one that  does 

not involve an explicit construction of the extension Km,n C F)  by appealing to 

[RV2, 3.1] or [Sa, Theorem 4]. 

Our final result is another corollary of Theorem 9.1. 

COROLLARY 9.6: Assume char k ~ 2. Then the universal division algebra Din,2 

is t-rational for any m > 2. In fact, set 

1 X z = 2 X l - t r ( X 1 )  and w =  7 ( 2 - z X 2 z - 1 ) .  
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Then D,n,2 is the division algebra of  fractions o f  

R = k [ t r ( X l ) , t r ( X 2 ) , t r ( X 1 X 2 ) , t r ( X ~ X ~ X h ) ] { z , w } ,  

where i , j  = 0,1 and h = 3 . . . . .  m.  The  r ing R is isomorphic to the skew 

polynomial  ring p~m--3 with fl = ( - 1 ) ;  see Definition 2.2. 

Proof: When  n -- 2, the field F in Theo rem 9.1 is equal to K2,2. Thus  D2,2 

is t -rat ional .  Moreover,  using the nota t ion  of the proof  of Theorem 9.1 we 

see tha t  D2,2 is the division algebra of fractions of the skew polynomial  ring 

k[ao, boo, blo]{z,w},  where ao = l t r ( X l )  and z = 2 X 1 -  tr(X1).  Since X2 = 
1 Yo + w ,  it follows tha t  z X 2 z  -1 = Yo - w and thus w = 5(X2 - z X 2 z - 1 ) .  

Finally, X2 = y o + w  = b o o + b l o z + w .  So boo -- �89 and 2bloz 2 = 

t r (X2z)  = 2tr (X1X2) - t r (X1) t r (X2) .  This  proves the corollary for m -- 2. The  

general case now follows from Theorem 3.1, since Din,2 = D2,2( t r (X~X~Xh))  as 

i , j = O ,  l a n d h = 3 , . . . , m .  | 

We do not know whether  or not Dm,n is ra t ional  for square-free integers n _> 3. 

Theo rem 1.2(b) par t ia l ly  reduces this question to the  case where n is a prime.  
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